

8K X 8 BIT HIGH SPEED CMOS SRAM

REVISION HISTORY

Rev. 1.2

<u>Revision</u>	<u>Description</u>	<u>Issue Date</u>
Rev. 1.0	Initial Issue	Aug.27.2010
Rev. 1.1	Delete E-Grade , revise ordering information in page 10.	Apr.06.2012
Rev. 1.2	Removed Package Type : SOJ	Apr. 08. 2019

8K X 8 BIT HIGH SPEED CMOS SRAM

Rev. 1.2

FEATURES

 ■ Fast access time: 25ns
■ Low power consumption: Operating current: 30mA (TYP.) Standby current: 1µA (TYP.)

■ Single 3~5V power supply

■ All inputs and outputs TTL compatible

Fully static operationTri-state output

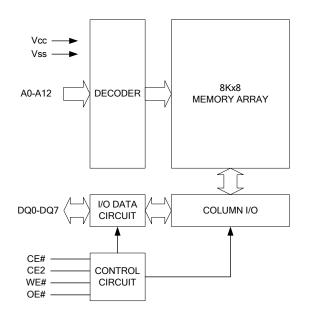
■ Data retention voltage : 2.0V (MIN.)

■ Green package available

■ Package: 28-pin 8mm x 13.4mm sTSOP

GENERAL DESCRIPTION

The LY65W64 is a 65,536-bit high speed CMOS static random access memory organized as 8,192 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.


The LY65W64 is well designed for high speed system applications, and particularly well suited for battery back-up nonvolatile memory application.

The LY65W64 operates from a single power supply of 3~5V and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating	Vcc Range Speed		Range Speed Power Dissipation		
Family	Temperature	voc Kange	Speed	Standby(IsB1,TYP.)	Operating(Icc,TYP.)	
LY65W64(LL)	0 ~ 70℃	3.0 ~ 5.5V	25ns	1µA	30mA	
LY65W64(LLI)	-40 ~ 85℃	3.0 ~ 5.5V	25ns	1µA	30mA	

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A12	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#, CE2	Chip Enable Inputs
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground
NC	No Connection

Lyontek Inc. reserves the rights to change the specifications and products without notice.

2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan.

Rev. 1.2

PIN CONFIGURATION

sTSOP

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	V _{T1}	-0.5 to 6.5	V
Voltage on any other pin relative to Vss	VT2	-0.5 to Vcc+0.5	V
On a ratio at Tamana rationa	т.	0 to 70(C grade)	$^{\circ}$ C
Operating Temperature	ТА	-40 to 85(I grade)	C
Storage Temperature	Тѕтс	-65 to 150	$^{\circ}$
Power Dissipation	Po	1	W
DC Output Current	Іоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	CE2	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	X	Х	Х	High-Z	I _{SB1}
Standby	Х	L	Х	Х	High-Z	I _{SB1}
Output Disable	L	Н	Н	Н	High-Z	Icc
Read	L	Н	L	Н	Douт	Icc
Write	L	Η	Х	L	Din	Icc

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

8K X 8 BIT HIGH SPEED CMOS SRAM

Rev. 1.2

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	Vcc		3.0	3.3	5.5	V
Input High Voltage	V _{IH} *1	Vcc=3.0~3.6V	2.0	-	Vcc+0.5	V
	VIH	Vcc=4.5~5.5V	2.4	-	Vcc+0.5	V
Input Low Voltage	VIL*2	Vcc=3.0~3.6V	- 0.5	-	0.6	V
	VIL	Vcc=4.5~5.5V	- 0.5	-	0.8	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$	- 1	-	1	μA
Output Leakage Current	llo	Vcc ≧ Vouт ≧ Vss, Output Disabled	- 1	-	1	μA
Output High Voltage	Vон	Іон = -4mA	2.2	-	-	V
Output Low Voltage	Vol	I _{OL} = 8mA	-	-	0.4	V
Average Operating Power supply Current	Icc	Cycle time = Min. CE# = V _{IL} and CE2 = V _{IH} , I _{I/O} = 0mA, Others at V _{IL} or V _{IH}	-	30	55	mA
Standby Power	IsB	CE# = V _{IH} or CE2 = V _{IL} Others at V _{IL} or V _{IH}	-	0.3	5	mA
Supply Current	I _{SB1}	CE# ≧Vcc-0.2V or CE2≦0.2V Others at 0.2V or Vcc-0.2V	-	1	50	μΑ

Notes:

- 1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 10ns.
- 2. VIL(min) = Vss 3.0V for pulse width less than 10ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical valued are measured at Vcc = Vcc(TYP.) and TA = 25°C

CAPACITANCE (TA = 25° C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	1	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -4mA/8mA$

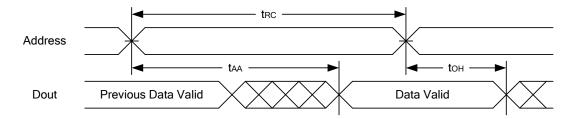
AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

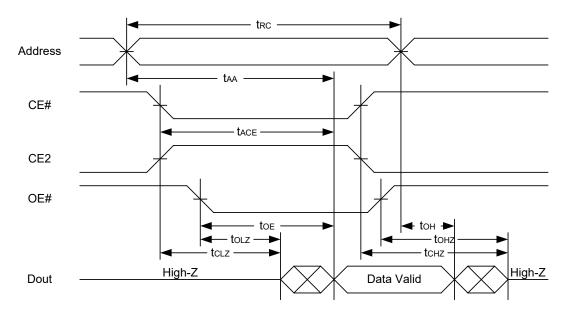
PARAMETER	SYM.	LY65V	LY65W64-25		
		MIN.	MAX.		
Read Cycle Time	t _{RC}	25	-	ns	
Address Access Time	taa	-	25	ns	
Chip Enable Access Time	tace	-	25	ns	
Output Enable Access Time	toe	-	9	ns	
Chip Enable to Output in Low-Z	tcLz*	4	-	ns	
Output Enable to Output in Low-Z	toLz*	0	-	ns	
Chip Disable to Output in High-Z	tcHz*	-	9	ns	
Output Disable to Output in High-Z	tonz*	-	9	ns	
Output Hold from Address Change	tон	3	-	ns	

(2) WRITE CYCLE

PARAMETER	SYM.	LY65V	LY65W64-25		
		MIN.	MAX.		
Write Cycle Time	twc	25	-	ns	
Address Valid to End of Write	t _{AW}	20	-	ns	
Chip Enable to End of Write	tcw	20	-	ns	
Address Set-up Time	tas	0	-	ns	
Write Pulse Width	twp	12	-	ns	
Write Recovery Time	twr	0	-	ns	
Data to Write Time Overlap	tow	10	-	ns	
Data Hold from End of Write Time	tон	0	-	ns	
Output Active from End of Write	tow*	6	-	ns	
Write to Output in High-Z	twnz*	-	10	ns	


^{*}These parameters are guaranteed by device characterization, but not production tested.

Rev. 1.2

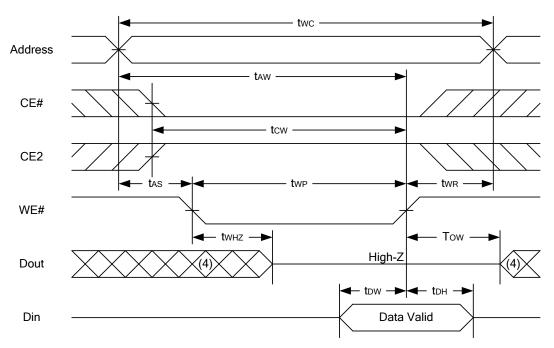

8K X 8 BIT HIGH SPEED CMOS SRAM

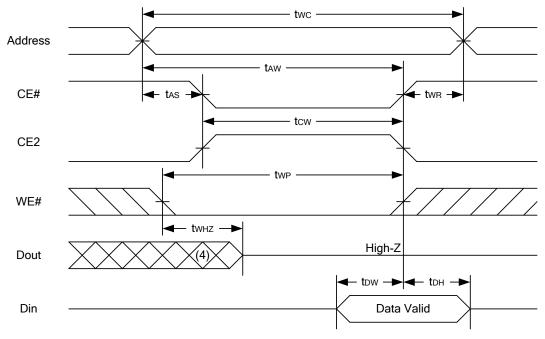
TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)

Notes:


- 1.WE# is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low., CE2 = high.
- 3.Address must be valid prior to or coincident with CE# = low, CE2 = high; otherwise tAA is the limiting parameter.
- 4.tclz, tolz, tchz and tohz are specified with CL = 5pF. Transition is measured ±500mV from steady state.
- 5.At any given temperature and voltage condition, tcHz is less than tcLz , t_{OHZ} is less than toLz.


8K X 8 BIT HIGH SPEED CMOS SRAM

Rev. 1.2

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# and CE2 Controlled) (1,2,5,6)

Notes:

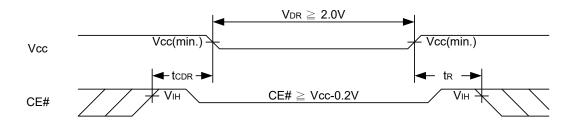
- 1.WE#, CE# must be high or CE2 must be low during all address transitions.
- 2.A write occurs during the overlap of a low CE#, high CE2, low WE#.
- 3.During a WE#controlled write cycle with OE# low, twp must be greater than twHz + tow to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE#low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 6.tow and twHz are specified with CL = 5pF. Transition is measured $\pm 500\text{mV}$ from steady state.

Lyontek Inc. reserves the rights to change the specifications and products without notice.

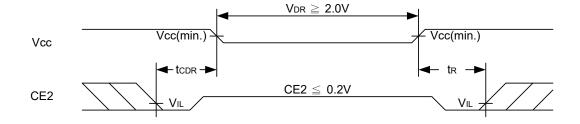
2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan.

Rev. 1.2

8K X 8 BIT HIGH SPEED CMOS SRAM


DATA RETENTION CHARACTERISTICS

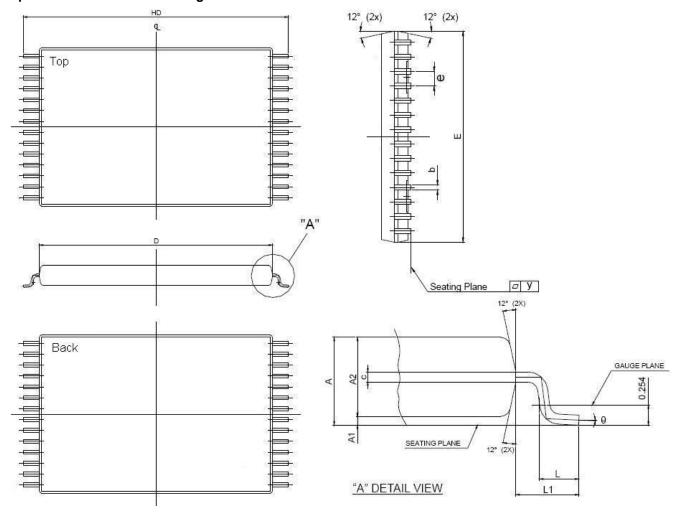
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention		CE# \geq V _{CC} - 0.2V or CE2 \leq 0.2V	2.0	-	5.5	V
Data Retention Current		V_{CC} = 2.0V CE# \geq V_{CC} - 0.2V or CE2 \leq 0.2V Others at 0.2V or V_{CC} -0.2V	-	0.5	30	μΑ
Chip Disable to Data Retention Time	ICDD	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	t _R		t _{RC*}	-	-	ns


t_{RC*} = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)



Rev. 1.2

8K X 8 BIT HIGH SPEED CMOS SRAM

PACKAGE OUTLINE DIMENSION

28 pin 8x13.4mm sTSOP Package Outline Dimension

SYMBOLS	DIMENSIO	ONS IN MILL	IMETERS	DIMENSIONS IN INCHES		
OTWIDOLO	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.10	1.20	0.040	0.043	0.047
A1	0.05	-	0.15	0.002	-	0.006
A2	0.91	1.00	1.05	0.036	0.039	0.041
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.07	0.15	0.23	0.003	0.006	0.009
HD	13.20	13.40	13.60	0.520	0.528	0.535
D	11.60	11.80	12.00	0.457	0.465	0.472
E	7.80	8.00	8.20	0.307	0.315	0.323
е	-	0.55	-	-	0.0216	-
L	0.30	0.50	0.70	0.012	0.020	0.028
L1	0.675	-	-	0.027	-	-
Y	0.00	-	0.076	0.000	-	0.003
θ	0°	3°	5°	0°	3°	5°

Rev. 1.2

8K X 8 BIT HIGH SPEED CMOS SRAM

ORDERING INFORMATION

Package Type	Access Time	Power Type	Temperature	Packing	Lyontek Item No.
	(Speed)(ns)		Range(°ℂ)	Туре	
32Pin	25	Ultra Low Power	0°C~70°C	Tray	LY65W64RL-25LL
(8mmx13.4mm) sTSOP				Tape Reel	LY65W64RL-25LLT
\$130P			-40℃~85℃	Tray	LY65W64RL-25LLI
				Tape Reel	LY65W64RL-25LLIT

8K X 8 BIT HIGH SPEED CMOS SRAM

Rev. 1.2

THIS PAGE IS LEFT BLANK INTENTIONALLY.