

Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

REVISION HISTORY

Revision	<u>Description</u>	<u>Issue Date</u>
Rev. 1.0	Initial Issue	Mar.20.2020
Rev. 1.1	DATA RETENTION CHARACTERISTICSpage9	Apr.25.2024
	Data Retention Current I _{DR} TYP. 4→5	

Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

FEATURES

■ Fast access time : 45/55ns■ Low power consumption:

Operating current : 12/10mA (TYP.) Standby current : 5µA (TYP.) ■ Single 2.7V ~ 3.6V power supply

■ All inputs and outputs TTL compatible

Fully static operationTri-state output

■ Data byte control :

(i) BYTE# fixed to V_{CC}
LB# controlled DQ0 ~ DQ7
UB# controlled DQ8 ~ DQ15

(ii) BYTE# fixed to Vss DQ15 used as address pin, while DQ8~DQ14 pins not used

■ Data retention voltage: 1.5V (MIN.)

■ Green package available

■ Package : 48-pin 12mm x 20mm TSOP I

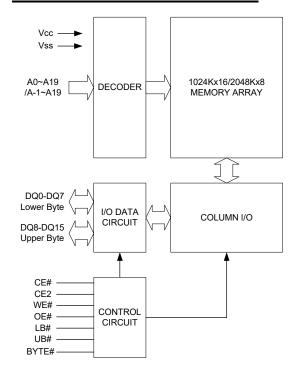
GENERAL DESCRIPTION

The LY62L102616B is a 16,777,216-bit low power CMOS static random access memory organized as 1,048,576 words by 16 bits or 2,097,152 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The LY62L102616B is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

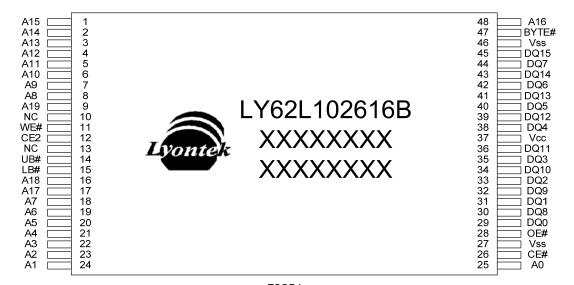
The LY62L102616B operates from a single power supply of $2.7V \sim 3.6V$ and all inputs and outputs are fully TTL compatible.

PRODUCT FAMILY


Product	Operating	Ves Bango	Ves Banga Speed Power Dissipati			
Family	Temperature	V _{CC} Range	Speed	Standby(I _{SB1} ,TYP.)	Operating(Icc,TYP.)	
LY62L102616B	0 ~ 70℃	2.7 ~ 3.6V	45/55ns	5µA	12/10mA	
LY62L102616B(I)	-40 ~ 85°C	2.7 ~ 3.6V	45/55ns	5µA	12/10mA	

Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM


FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A19	Address Inputs(word mode)
A-1 - A19	Address Inputs(byte mode)
DQ0 - DQ15	Data Inputs/Outputs
CE#, CE2	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
BYTE#	Byte Enable
Vcc	Power Supply
Vss	Ground
NC	No Connection

PIN CONFIGURATION

Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on V _{CC} relative to V _{SS}	V _{T1}	-0.5 to 4.6	V
Voltage on any other pin relative to V _{SS}	V _{T2}	-0.5 to Vcc+0.5	V
On a ratio at Taman a rational	т	0 to 70(C grade)	°C
Operating Temperature	TA	-40 to 85(I grade)	
Storage Temperature	T _{STG}	-65 to 150	°C
Power Dissipation	P _D	1	W
DC Output Current	Іоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	CE2	BYTE#	OE#	WE#	I R#	LB# UB#		I/O OPERATION		SUPPLY
INOBL	OL#	OLZ	DIIL#	OL#	***	LD#	OD#	DQ0-DQ7	DQ8-DQ14	DQ15	CURRENT
	Н	Х	Х	Χ	Χ	Χ	X	High-Z	High-Z	High-Z	
Standby	Χ	L	X	Х	Χ	Χ	Х	High-Z	High-Z	High-Z	IsB,IsB1
	Χ	Χ	Н	Χ	Χ	Н	Н	High-Z	High-Z	High-Z	
Output	L	Н	Н	Н	Н	L	Х	High-Z	High-Z	High-Z	
Disable	L	Н	Н	Н	Н	Χ	L	High-Z	High-Z	High-Z	Icc,Icc1
Disable	L	Н	L	Н	Н	L	L	High-Z	High-Z	A-1	
	L	Н	Н	L	Н	L	Н	Dout	High-Z	High-Z	
Read	L	Н	Н	L	Н	Н	L	High-Z	Dout	Dout	Icc,Icc1
	L	Н	Н	L	Н	L	L	D _{оит}	Dout	Dout	
	L	Н	Н	Χ	L	L	Н	Din	High-Z	High-Z	
Write	L	Н	Н	Х	L	Н	L	High-Z	Din	\bar{D}_IN	Icc,Icc1
	L	Н	Н	Χ	L	L	L	Din	Din	DIN	
Byte# Read	L	Н	L	L	Н	L	L	D _{оит}	High-Z	A-1	lcc,lcc1
Byte # Write	L	Н	L	Х	L	L	L	Din	High-Z	A-1	Icc,Icc1

Notes:

^{1.} $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

^{2.} The BYTE# pin has to be tied to V_{CC} to use the device as a 1M x 16 SRAM, and to be tied to V_{SS} as a 2M x 8 SRAM. In the 2M x 8 configuration, Pin 45 is A-1, and both UB# and LB# are tied to V_{SS} , while DQ8 to DQ14 pins are not used.

Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	ON		MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	Vcc				2.7	3.0	3.6	V
Input High Voltage	V _{IH} *1				2.2	-	Vcc+0.3	V
Input Low Voltage	V _{IL} *2				- 0.2	-	0.6	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$			- 1	•	1	μΑ
Output Leakage Current	ILO	Vcc ≧ Vouт ≧ Vss Output Disabled			- 1	-	1	μA
Output High Voltage	Vон	I _{OH} = -1mA			2.2	2.7	-	V
Output Low Voltage	Vol	I _{OL} = 2mA			-	-	0.4	V
	Icc	Cycle time = Min. CE#≦0.2V		- 45	-	12	20	mA
Average Operating		and CE2≧Vcc-0.2V I⊮o = 0mA Others at 0.2V or Vcc-0.2'	V	- 55	-	10	18	mA
Power supply Current	Icc ₁	Cycle time = 1μ s CE# \leq 0.2V and CE2 \geq V _{CC} -0.2V I _{I/O} = 0mA Other pins at 0.2V or V _{CC} -0.2V			-	3	5	mA
		$CE\# \ge V_{CC}-0.2V$	SL*5	25 ℃	-	5	10	μA
Standby Power		or CE2≦ 0.2V	SLI*5	40 ℃	-	5	10	μA
Supply Current	I _{SB1}	Other pins at 0.2V	SL	1	-	5	30	μA
		or V _{CC} -0.2V	SLI		-	5	40	μA

Notes:

- 1. $V_{IH}(max) = V_{CC} + 2.0V$ for pulse width less than 6ns.
- 2. $V_{IL}(min) = V_{SS} 2.0V$ for pulse width less than 6ns.
- 3. Over/Undershoot specifications are characterized on engineering evaluation stage, not for mass production test.
- Typical values are included for reference only and are not guaranteed or tested.
 Typical valued are measured at V_{CC} = V_{CC}(TYP.) and T_A = 25°C

CAPACITANCE $(T_A = 25^{\circ}C, f = 1.0 \text{MHz})$

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to V _{CC} - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$

TEL: 886-3-6668838 FAX: 886-3-6668836

^{5.} This parameter is measured at $V_{CC} = 3.0V$

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM Rev. 1.1

AC ELECTRICAL CHARACTERISTICS

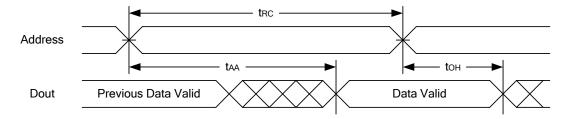
(1) READ CYCLE

PARAMETER	SYM.	LY62L10	2616B-45	LY62L102616B-55		UNIT	
PARAMETER	STIVI.	MIN.	MAX.	MIN.	MAX.	UNII	
Read Cycle Time	t _{RC}	45	-	55	-	ns	
Address Access Time	t _{AA}	-	45	-	55	ns	
Chip Enable Access Time	t _{ACE}	-	45	-	55	ns	
Output Enable Access Time	toe	-	25	-	30	ns	
Chip Enable to Output in Low-Z	t _{CLZ} *	10	-	10	-	ns	
Output Enable to Output in Low-Z	tolz*	5	-	5	-	ns	
Chip Disable to Output in High-Z	t _{CHZ} *	-	15	-	20	ns	
Output Disable to Output in High-Z	tonz*	-	15	-	20	ns	
Output Hold from Address Change	tон	10	-	10	-	ns	
LB#, UB# Access Time	t _{BA}	-	45	-	55	ns	
LB#, UB# to High-Z Output	t _{BHZ} *	-	20	-	25	ns	
LB#, UB# to Low-Z Output	t _{BLZ} *	10	-	10	-	ns	

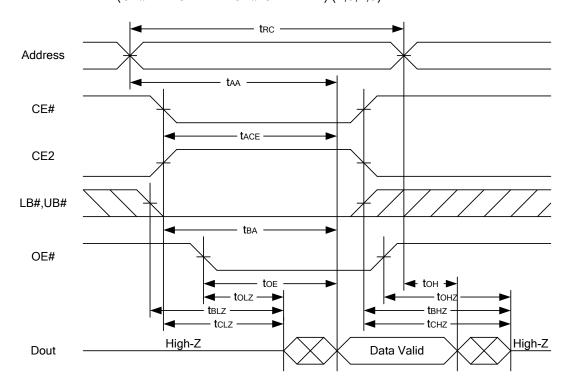
(2) WRITE CYCLE

PARAMETER	SYM.	LY62L102616B-45		LY62L10	LY62L102616B-55		
PARAMETER	STIVI.	MIN.	MAX.	MIN.	MAX.	UNIT	
Write Cycle Time	twc	45	-	55	-	ns	
Address Valid to End of Write	t _{AW}	40	-	50	-	ns	
Chip Enable to End of Write	t _{CW}	40	-	50	-	ns	
Address Set-up Time	t _{AS}	0	-	0	-	ns	
Write Pulse Width	twp	35	-	45	-	ns	
Write Recovery Time	twR	0	-	0	-	ns	
Data to Write Time Overlap	t _{DW}	20	-	25	-	ns	
Data Hold from End of Write Time	t _{DH}	0	-	0	-	ns	
Output Active from End of Write	t _{OW} *	5	-	5	-	ns	
Write to Output in High-Z	twHz*	-	20	-	20	ns	
LB#, UB# Valid to End of Write	t _{BW}	35	-	45	-	ns	

^{*}These parameters are guaranteed by device characterization, but not production tested.



Rev. 1.1

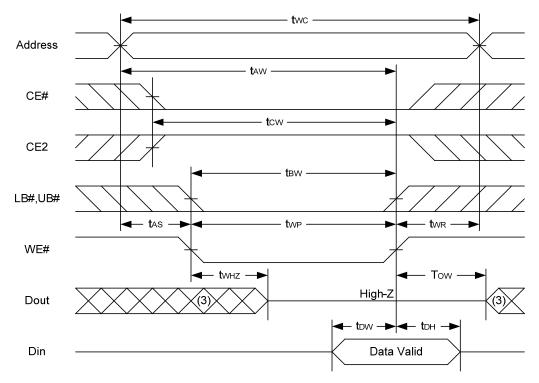

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

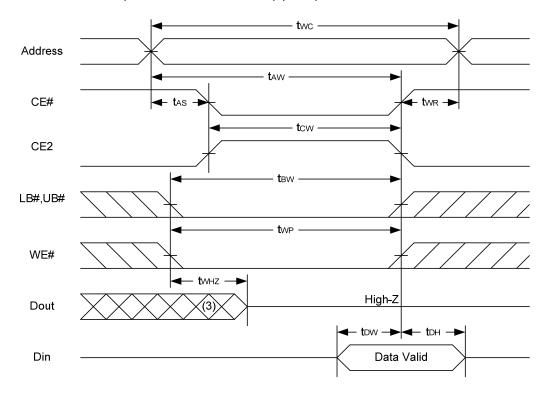
TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)

Notes:

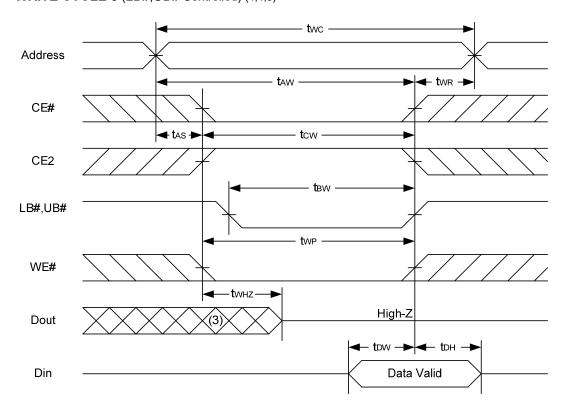

- 1.WE# is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low, CE2 = high, LB# or UB# = low.
- 3.Address must be valid prior to or coincident with CE# = low, CE2 = high, LB# or UB# = low transition; otherwise t_{AA} is the limiting parameter.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{BHZ} is less than t_{BLZ}, t_{OHZ} is less than t_{OLZ}.


Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

WRITE CYCLE 1 (WE# Controlled) (1,2,4,5)

WRITE CYCLE 2 (CE# and CE2 Controlled) (1,4,5)



Rev. 1.1

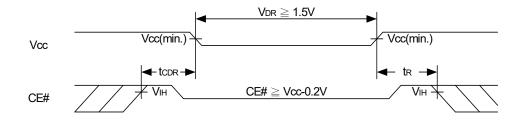
16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

WRITE CYCLE 3 (LB#,UB# Controlled) (1,4,5)

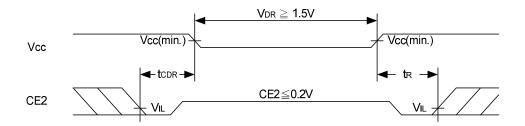
- 1.A write occurs during the overlap of a low CE#, high CE2, low WE#, LB# or UB# = low.
- 2.During a WE# controlled write cycle with OE# low, twp must be greater than twnz + tow to allow the drivers to turn off and data to be
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4.If the CE#, LB#, UB# low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- $5.t_{OW}$ and t_{WHZ} are specified with $C_L = 5pF$. Transition is measured ± 500 mV from steady state.

Rev. 1.1

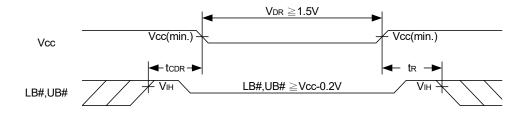
16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM


DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT		
V _{CC} for Data Retention	V_{DR}	$CE\# \ge V_{CC}$ - 0.2V or $CE2 \le 0.2$	$CE\# \ge V_{CC}$ - 0.2V or $CE2 \le 0.2V$				3.6	V
		\\\ -4.5\\	SL	25 ℃		5	10	μA
Data Retention Current	I _{DR}	$CE\# \ge V_{CC}-0.2V$ or $CE2 \le 0.2V$ Other pins at 0.2V or $V_{CC}-0.2V$	SLI	40 ℃		5	10	μA
Data Neterition Current	IDR		SL		-	5	30	μA
			SLI			5	40	μA
Chip Disable to Data Retention Time	t _{CDR}	See Data Retention Waveforms	0	-	-	ns		
Recovery Time	t _R				t _{RC*}	-	-	ns

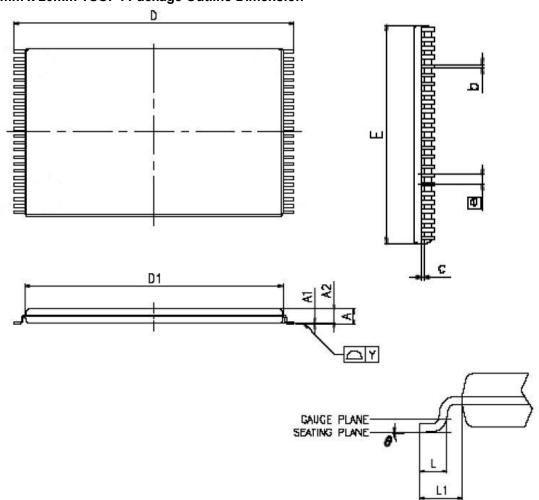

t_{RC*} = Read Cycle Time

DATA RETENTION WAVEFORM


Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

Low Vcc Data Retention Waveform (3) (LB#, UB# controlled)



Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

PACKAGE OUTLINE DIMENSION

48-pin 12mm x 20mm TSOP I Package Outline Dimension

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

Water Court of			,
SYMBOLS	MIN.	NOM.	MAX
A	ı	ı	1.20
A1	0.05	ı	0.15
2	0.95	1.00	1.05
Ф	0.17	0.22	0.27
U	0.10	_	0.21
	19.80	20.00	20.20
□1	18.30	18.40	18.50
Е	11.90	12.00	12.10
₽	•	0.50 BASI	С
┙	0.50	0.60	0.70
L1	1	ი.გი	_
Y	_	_	0.10
θ	D,	_	5"
	SYMBOLS A A1 A2 b c D D L L Y	SYMBOLS MIN. A - A1 0.05 A2 0.95 b 0.17 c 0.10 D 19.80 D1 18.30 E 11.90 E 0.50 L1 - Y -	A

NOTES:

- 1 JEDEC OUTLINE : MO-142 DD
- 2.PROFILE TOLERANCE ZONES FOR 01 AND E DO NOT INCLUDE MOLD PROTRUSION, ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 15 0.25mm PER SIDE.
- 3.D MENSION & DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE 6 DIMENSION AT NAXIMUN MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWIER RADIUS OR THE FOOT.

Lyontek Inc. reserves the rights to change the specifications and products without notice.

2F, No.17, Industry E. Rd. II, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838

Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

ORDERING INFORMATION

Package Type	Access Time (Speed)(ns)	Power Type	Temperature Range(℃)	Packing Type	Lyontek Item No.
48-pin (12mm x 20mm) TSOP I	45	Special Ultra Low Power	0℃~70℃	Tray	LY62L102616BLL-45SL
				Tape Reel	LY62L102616BLL-45SLT
			-40°C~85°C	Tray	LY62L102616BLL-45SLI
				Tape Reel	LY62L102616BLL-45SLIT
	55	Special Ultra	0°C~70°C	Tray	LY62L102616BLL-55SL
		Low Power		Tape Reel	LY62L102616BLL-55SLT
			-40°C~85°C	Tray	LY62L102616BLL-55SLI
				Tape Reel	LY62L102616BLL-55SLIT

Rev. 1.1

16M Bits (2Mx8 /1Mx16 Switchable) LOW POWER CMOS SRAM

THIS PAGE IS LEFT BLANK INTENTIONALLY.